User Manual of integrated Network Analysis Pipeline (iNAP) in Denglab

http://mem.rcees.ac.cn:8081

Updated

Jan. 2022

@ Denglab

Metagenomics for Environmental Microbiology (MEM)

Research Center for Eco-Environmental Sciences, CAS

Workflow of iNAP

Steps of InterDomain Ecological Network Analysis Pipeline (IDENAP)

Content

To user	'S	1
A. App	roaches Network Construction (IDEN)	2
1. Spar	rCC	2
1.1	Majority selection	2
1.2	SparCC correlation and p-value calculation	3
1.3	SparCC correlation and p-value calculation (FastSpar)	4
1.4	Output file from SparCC result	4
2. eLS.	A	6
2.1	Majority selection	6
2.2	LSA calculation	7
2.3	LSA query and interaction relation	8
2.4	Output file from LSA result	11
3. SPII	EC-EASI	12
3.1	SpiecEasi calculation	12
3.2	Output file from Spiec-Easi	14
4. RM'	T-based method for Pearson/Spearman correlations	15
4.1	Majority selection	15
4.2	Similarity matrix calculation	15
4.3	Random Matrix Theory (cutoff)	17
4.4	Generate networks from RMT-based correlations	18
B. Netw	vork analysis (IDEN)	20
1. Bipa	artite reports	20
1.1	Network property for bipartite matrix	20
1.2	Network property for bipartite matrix at grouplevel	21
1.3	Individual node property	22
1.4	Module separation and module hubs	23
2. Bipa	artite visualization	23
2.1 (Generate node attribute	23
3. Bipa	artite statistics	24
3.1	Degree distribution	24
3.2	Fitting Power law models for bipartite network	24
3.3	Randomization of bipartite networks	25
3.4	OTU/Gene Significance with Environmental Factors (Bipartite network)	27

3.5 Mantel Test	
3.6 Module-EigenGene Analysis (Bipartite network)	
C. Network Construction (MENAP)	
D. Network Analyses (MENAP)	
E. Auxiliary tools in miscellaneous section	
1. Taxonomy summary of low level species for bipartite networks	
2. Convert sif file to bipartite matrix	
3. Convert sif file to adjacent matrix	
4. Merge files	
5. File Compression	
6. Data location	
F. Operation tricks and common problem solutions	
1. Upload	
2. Basic operations in Galaxy	
3. Dataset deletions	
4. Share historys to other users	

If you have questions and is willing to make a contribution to this pipeline, please feel free to contact Prof. Ye Deng (<u>yedeng@rcees.ac.cn</u>).

Pipeline maintainer: Kai Feng (kaifeng@rcees.ac.cn)

Please cite: Kai Feng, Yuguang Zhang, Zhili He, Daliang Ning, Ye Deng. Interdomain ecological networks between plants and microbes. Molecular Ecology Resources. 2019,19 (6):1565-1567. <u>doi:10.1111/1755-0998.13081</u>

To users

- 1. This pipeline is aimed to explore the inter-domain ecological networks, ignoring the associations between intra-domain species.
- 2. Users are allowed to register account. Anonymous users are also allowed to operate in this pipeline.
- 3. Since the limitation of server memory and the ability of association methods to handle large dataset, we strongly recommend to reduce the No. of species/OTUs, i.e., not exceed 2000 OTUs/species, otherwise the program will be disrupted or take a long time (weeks to months).
- 4. Generally, we recommend SparCC and SPIEC-EASI to construct IDEN for beginners. The other two methods, eLSA and RMT-based correlations, can also be used if you are clear about these methods.
- 5. This pipeline is for research only, and please do not use for commercial activities.
- 6. Since our original goal of this pipeline is focusing on plant-microbe networks, we will add a mark in each of names of species or OTUs to distinguish the two domain species, *i.e.* "_P" to indicate plant and "_M" to indicate microbe. The two marks will be removed during the construction of IDEN.
- 7. In order to reduce the potential errors, please do not include special characters in species names and sample names, e.g. blank character, "-", "#", "\$" and etc. And do not use pure numbers in samples names or number started characters, i.e., "11", or "1A" and etc.
- 8. For new users, we provided a test dataset in the Shared library/Test data section.

Instructions

A. Approaches Network Construction (IDEN)

1. SparCC

https://bitbucket.org/yonatanf/sparcc/src/default/

Genomic survey data, such as those obtained from 16S rRNA gene sequencing, are subject to underappreciated mathematical difficulties that can undermine standard data analysis techniques. We show that these effects can lead to erroneous correlations among taxa within the human microbiome despite the statistical significance of the associations. To overcome these difficulties, we developed SparCC; a novel procedure, tailored to the properties of genomic survey data, that allow inference of correlations between genes or species. We use SparCC to elucidate networks of interaction among microbial species living in or on the human body.

1.1 Majority selection

The majority is to filter the species or OTUs which were less detected among all samples. The integer of this value is recommended as the 80% of the sample numbers.

Inputs:

majority_selection Manually filtration the input table by removing the lower detected OTUs or species (Galaxy Version 1.0.0)	Favorite	
Microbial data (1st Group)		
D D 522: bac_16S_test.txt	•	B
Fill in the majority for first table		
0		
Default value 0:only keep OTUs or species detected in more than half of samples Number of species groups for network analysis O One group of species		
 Two groups of species 		
Plant table (2nd Group)		
D D 525: plant_abundance.txt	•	B
Fill in the majority for second table		
0		
0		

Default value 0:only keep OTUs or species detected in more than half of samples

Parameters:

Input Parameter	Value	Note for rerun
Microbial data	bac_16S_test.txt	OTU/Gene/Species abundance table for microbial community
Fill in the majority for first table	0	selected accordingly

Plant table	plant abundance.txt	OTU/Gene/Species abundance table for plant community
Fill in the majority for second table	0	selected accordingly

Attention:

Do not use any symbols like ",","(",")","#","-" in your sample names

Do not start your sample name with numbers, e.g. "1A". Please rename it like "A1".

Outputs:

107 lines 格式: tabular , 数据库: ?				
			- -	-
1 2 3 4 5 6 7 8 9 10	11	12	13	14
CK1 CK2 CK3 CK4 CK5 CK6 CK7 N101 N10	82 N103	N104	N105	N106
OTU1_M 163 139 231 162 530 524 568 215 185	5 465	212	747	728
OTU2_M 58 116 71 115 93 114 95 126 78	119	49	58	54
OTU3_M 28 19 38 54 110 156 135 50 64	84	43	246	149
OTU4_M 72 51 91 62 98 130 127 61 88	94	63	187	169

One tabular file contained filtered plants and microbes, named with their majorities.

1.2 SparCC correlation and p-value calculation

Inputs:

SparCC correlation and p-value calculation Computing correlations in compositional data (16S, metagenomics, etc) and estimating pseudo p-values via a bootstrap procedure. (Galaxy Version 1.0.0)	15
Input table for SparCC pseudo p-value calculation	
D D 563: Filtered_OTU_table 	B
Number of inference iteration to average over	
20	
Number of exclusion iterations to remove strongly correlated pairs	
10	
Correlation strengh exclusion threshold	
0.1	
Number of shuffled times	
10	
Slow for more shuffle times	
Compute one or two sided p-value	
Tow side p-values	•

Parameters:

Input Parameter	Value	Note for rerun
Input table for SparCC pseudo p-value calculation	Filtered_OTU_table	Filtered OTU/Gene/Species table with majority
Number of inference iteration to average over	20	
Number of exclusion iterations to remove strongly correlated pairs	10	
Correlation strengh exclusion threshold	0.1	
Number of shuffled times	100	Slow for more shuffle times
Compute one or two sided p-value	Tow side p-values	

Outputs:

Two tabular files: one is the correlation matrix, another is the p-value matrix.

571: SparCC pseudo two_sided side p-value

570: SparCC correlation for each pairwise

1.3 SparCC correlation and p-value calculation (FastSpar)

The step FastSpar method to calculate these outputs for the SparCC method, which is an efficient alternative way to handle larger datasets (more than 1,000 species), similar to 1.2.

1.4 Output file from SparCC result

Inputs:

Generate networks from SparCC Bipartite network matrix and output for visualization from SparCC results (Galaxy Version 1.0.0) ▼ O	ptions
SparCC correlation matrix	
Image: SparCC correlation for each pairwise	•
Threshold value to filter the SparCC result	
0.2	
The absolute value of correlation coefficient smaller than this value will be discarded	
SparCC pseudo p value matrix after permutation	
D D 573: SparCC pseudo p-value for each pairwise	• 🕞
Filtering the SparCC result according to P value	
Yes	•
Significance value	
0.05	
The p value smaller than this value will be kept	
Visualization approach for this network analysis	
Cytoscape	•
Generate bipartite network or single-mode network	
Bipartite network (two groups of species with label '_M' or '_P' in species IDs)	•
Title for the visualized output file - to remind you what the job was for	

visualization for SparCC result

Parameters:

Input Parameter	Value	Note for rerun
SparCC correlation matrix	SparCC correlation for each pairwise	Correlation matrix
Threshold value to filter the SparCC result	0.3	Default value from SparCC
SparCC pseudo p value matrix after permutation	SparCC pseudo p-value for each pairwise	P-value matrix
Filtering the SparCC result according to P value	yes	Default
Significance value	0.05	
Visualization approach for this network analysis	Cytoscape	Cytoscape or Gephi
Generate bipartite network or single- mode network	Bipartite network (two groups of species with label '_M' or '_P' in species IDs)	Bipartite or Adjacent
Title for the visualized output file - to remind you what the job was for	visualization for SparCC result	Put anything you want to remember

Outputs:

585: Adjacent network for _P group Cytoscape Edge attribute 0.2 visualization for SparCC result	ø	×
584: Adjacent network for _P group Cytoscape sif 0.2 visualization for SparCC result	ø	×
583: Adjacent network matrix for _P group 0.2 visualization for SparCC result	A	×
582: Adjacent network for _M group Cytoscape Edge attribute 0.2 visualization for SparCC result	ø	×
581: Adjacent network for _M group Cytoscape sif 0.2 visualization for SparCC result	ø	×
580: Adjacent network matrix for _M group 0.2 visualization for SparCC result	ø	×
579: Bipartite network Cytoscape Edge attribute 0.2 visualization for SparCC result	A	×
578: Bipartite network Cytoscape sif 0.2 visualization for SparCC result	ø	×
577: Bipartite network matrix 0.2 visualization for SparCC result	ø	×
576: Whole network Cytoscape Edge attribute 0.2 visualization for SparCC result	ø	×
575: Whole network Cytoscape sif 0.2 visualization for SparCC result	A	×
574: Whole network matrix 0.2 visualization for SparCC result	ø	×

Twelve output files (Cytoscape) for one whole network, one bipartite network and two adjacent networks. For each matrix, there are a 'sif' file to importing into Cytoscape and an edge attribute file.

Eight output files (Gephi) for one whole network, one bipartite network and two adjacent networks. For each matrix, there is a 'csv' file to importing into Gephi as edge file.

2. <u>eLSA</u>

The Local Similarity Analysis (LSA) technique is unique to capture the time-dependent associations (possibly time-shifted) between microbes and between microbe and environmental factors (Ruan et al., 2006). Significant LSA associations can be interpreted as a partially directed association network for further network-based analysis. A similar approach called Local Trend Analysis (LTA) has also been developed for the state change series, where a relative change threshold is applied to convert the original time series data into up-change, no-change and down-change state series (Xia et al 2015). Many advanced network analysis tools (including ELSA) have been analyzed in a benchmark paper published in the ISME Journal (Weiss et al. 2016). The more introduction can be found in the home page (https://bitbucket.org/charade/elsa/wiki/Home).

2.1 Majority selection

Similar steps to **1.1**.

2.2 LSA calculation

This step is aimed to calculate the LS for each pairwise association.

Inputs:

LSA_calculation Extended Local Similarity Analysis computation (Galaxy Version 1.0.0)	☆ Favorite	✓ Options
Input table for Isa calculation		
Image: Constraint of the second se		-
number of spots		
4		
number of replicates for each time spot		
7		
maximum time delay		
0		
Must be integer and less than spot numbers		
Method for p-value estimation		
Use permutation		•
Permutation number 100 or precision=0.01/permutation for p-value estimation		
5		
Number of bootstraps for 95% confidence interval estimation		
0		•
Bootstrap is not suitable for non-replicated data		
Method to fill missing data		
fill up with zeros		•
Method to smmarize replicates data		
simple averaging		•
Method to normlize data		
percentileZ normalization + robust estimates (with perm, mix and theo, and must use this for the	o and mix, defaul	t) 🗸
Qvalue calculation method		
use scipy and storeyQvalue function		•

Parameters:

Input Parameter	Value	Note for rerun
Input table for Isa calculation	Filtered_OTU_table	
number of spots	4	
number of replicates for each time spot	7	
maximum time delay	0	Integer and less than spot numbers
Method for p-value estimation	Use permutation	
Permutation number 100 or precision=0.01/permutation for p-value estimation	100	

Number of bootstraps for 95% confidence interval estimation	0	Bootstrap is not suitable for non-replicated data
Method to fill missing data	fill up with zeros	
Method to smmarize replicates data	simple averaging	
Method to normlize data	percentileZ normalization + robust estimates (with perm, mix and theo, and must use this for theo and mix, default)	
Qvalue calculation method	R's qvalue package	

Outputs:

One tabular file contained local similarity score (LS) and other relevant scores.

587: LSA calculation result for each pairwise

5,566 lines

格式: tabular, 数据库: ?

The time elapsed 243 seconds

Output explaination for each term

-X: factor name X

-Y: factor name Y

-LS: Local Similarity Score

-low/upCI: low or up 95% CI for LS

-Xs: align starts position in X

-Ys: align starts position in Y

-Len: align length

-Delay: calculated delay for align, Xs-Ys

-P,Q: p/q-value for LS

-PCC,Ppcc,Qpcc: Pearson's Correlation Coefficient, p/q-value for PCC

-SCC,Pscc,Qscc: Spearman's Correlation Coefficient, p/q-value for SCC

-SPCC,Pspcc,Qspcc,Dspcc: delay-Shifted Pearson's Correlation Coefficient, p/q-value, delay size for SPCC -SSCC,Psscc,Qsscc,Dsscc: delay-Shifted Spearman's Correlation Coefficient, p/q-value, delay size for SSCC

2.3 LSA query and interaction relation

This step is to filter LS according to your own criterion.

The matching pattern for LSA query should be filled correctly according to the recommended format. [!]Key1[>,<,>=,<=,==,!=]V1[|,&][!]Key2[>,<,>=,<=,==,!=]V2[|,&]... and any groupings using '(' and ')' e.g.'(!P>0.01)&(\$Q<0.01)'. You could choose the parameter provided to make a query formula showing previously. In this step, we provide all the possible selections to fulfill the requirement for your query choice. **Inputs:**

LSA query and interaction relation LSA query selection and output for the relation added in the final column (Galaxy Version 1.0.0)	d 🔓 Favorite	▼ Options
A pairwise calculation result		
D D 587: LSA calculation result for each pairwise		•
hich coloum to select as filtration criterion		
Local Similarity Score		
ease see the helow potential recommendation		
hat to do with the selected column of LSA table		
Greater or equal (>=)		
ll in the threshold value		
is value should be in float format if it use to compare, otherwise it will be stopped.		
ike opposite result		
∂ No ⊃ Yes		
o not forget the opposite value of LS score, e.g. 0.28 and -0.28.		
ditional Query Conditon		
: Additional Query Conditon		
The relation between this condition and the previous condition		
Or		
which coloum to select as filtration criterion		
Local Similarity Score		
what to do with the selected column of LSA table		
Less or equal (<=)		
Fill in the threshold value		
-0.28		
This value should be in float format if it use to compare, otherwise it will be stopped.		
Take opposite result		
⊘ No ○ Yes		
Do not forget the opposite value of LS score, e.g. 0.28 and -0.28.		
2: Additional Query Conditon		
The relation between this condition and the previous condition		
And		
which coloum to select as filtration criterion		
P-value for LS		
what to do with the selected column of LSA table		
Less or equal (<=)		
Fill in the threshold value		
i nis value snould be in float format if it use to compare, otherwise it will be stopped.		
⊘ No ○ Yes		

+ Insert Additional Query Conditon

Parameters:

Input Parameter	Value	Note for rerun
LSA pairwise calculation result	LSA calculation result for each pairwise	
which coloum to select as filtration criterion	Local Similarity Score	1 st condition
what to do with the selected column of LSA table	Greater or equal (>=)	
Fill in the threshold value	0.8	
Take opposite result	No	
The relation between this condition and the previous condition	Or	2 nd condition
which coloum to select as filtration criterion	Local Similarity Score	
what to do with the selected column of LSA table	Less or equal (<=)	
Fill in the threshold value	-0.8	
Take opposite result	No	
The relation between this condition and the previous condition	And	3 rd condition
which coloum to select as filtration criterion	P-value for LS	
what to do with the selected column of LSA table	Less or equal (<=)	
Fill in the threshold value	0.05	
Take opposite result	No	

Outputs:

603: Queried LSA result 988 lines 格式: tabular, 数据库: ?

About the interaction type

- pu: positive undirected
- nu: negative undirected
- pdl: positive directed lead (X lead Y)
- ndl: negative directed lead (X lead Y)
- pdr: positive directed retard (X retard Y)
- ndr: negative directed retard (X retard Y)

2.4 Output file from LSA result

This step will generate three output files, including bipartite network matrix (or adjancency matrix), visualization input (for Cytoscape or Gephi) and associated edge attributes if needed.

Inputs:

Generate networks from LSA Bipartite network matrix and output for visualization from LSA results (Galaxy Version 1.0.0)	ıs
Queried LSA pairwise	
Image: Construction of the second	B
The last column of the file is 'relation'	
Visualization approach for this network analysis	
Gephi	•
Interaction type	
O Undirected O Directed	
Generate bipartite network or single-mode network	
Bipartite network (two groups of species with label '_M' or '_P' in species IDs)	•
Title for the output file - to remind you what the job was for, bipartite or adjancency	
eLSA output	

Parameters:

Input Parameter	Value	Note for rerun
Queried LSA pairwise	81: Queried LSA result	
Visualization approach for this network analysis	Gephi	Cytoscape / Gephi
Interaction type	Undirected	Only for Gephi
Generate bipartite network or single-mode network	Bipartite network (two groups of species with label '_M' or '_P' in species IDs)	Bipartite or Adjacent
Title for the output file - to remind you what the job was for, bipartite or adjancency	Bipartite network matrix of LSA	Put anything you want

Outputs:

639: Adjacent network for _P group Gephi Edge attribute eLSA output	۵ 🌶 ۲	×
638: Adjacent network matrix for _P group eLSA output	۰ 🌶 🕲	×
637: Adjacent network for _M group Gephi Edge attribute eLSA output	۰ 🆋 🕲	×
636: Adjacent network matrix for _M group eLSA output	۰ 🆋 🕲	×
635: Bipartite network Gephi Edge attribute eLSA output	۰ 🆋 🕲	×
634: Bipartite network matrix eLSA output	۰ 🌶 🕲	×
633: Whole network Gephi Edge attribute eLSA output	۰ 🌶 🕲	×
632: Whole network matrix eLSA output	۰ 🌶	×

Files similar to 1.4

3. SPIEC-EASI

Sparse InversE Covariance estimation for Ecological Association and Statistical Inference. Please see more in https://github.com/zdk123/SpiecEasi#cross-domain-interactions.

3.1 SpiecEasi calculation

Inputs:

				inverse cov	variance matrix	or coefficient matri	x from SpiecEasi	☆ Favorite	 Option 	าร
(Ga	axy Ve	i calcul ersion 1	ation Generat .0.0)	e inverse cov						
Microl	oial da	ata								
C	C		522: bac_16S	_test.txt					•	B
Fill in 1	he m	aiority	for first table							
0		.,,								
Otoply	(000 (concios datas	ad in mara t	han half of can	volos				
Multip	le do	mains	species detec	ed in more i		ipies				
Cross	-dom	ain calo	ulation							•
Plan	table	2								
Ľ	¢		525: plant_	bundance.t	d				•	B
Fill ir	the r	najorit	y for second	table						
0										
Ľ										
0:onl	y keep	OTUs	or species dete	cted in more	e than half of sa	mples				
0:onl	y keep tion n	OTUs	or species dete	cted in more	e than half of sa	mples				
0:onl; Estima	y keep tion n) OTUs nethod	or species dete I	cted in more	e than half of sa	Imples				
0:onl Estima glasso Numb	y keep tion n	o OTUs nethod penalti	or species dete I es - somewhe	cted in more	e than half of sa	imples ally good				
0:only Estima glasso Numb	y keep tion n o er of j) OTUs nethoc penalti	or species dete I es - somewhe	cted in more	e than half of sa n 10-100 is usu	imples ally good				
0:onl Estima glasso Numb 20 Minim	y keep tion n o er of um la) OTUs nethod penalti mbda	or species dete I es - somewho ratio	cted in more	e than half of sa n 10-100 is usu	Imples ally good				
0:only Estima glasso Numb 20 Minim 0.01	y keep tion n o er of p um la) OTUs nethod penalti mbda	or species dete I es - somewho ratio	cted in more	e than half of sa	Imples ally good				
0:only Estima glasso Numb 20 Minim 0.01 0.01	y keep tion n er of p um la) OTUs nethod penalti mbda	or species dete I es - somewho ratio wer values of I	re betweer	e than half of sa n 10-100 is usu re more memo	ally good	pute, and sometimes	s huge will throw a	n error.	\
0:only Estima glasso 20 Minim 0.01 0.001 H	y keep tion n er of p um la by defi	o OTUs nethoc penalti mbda ault. Lo	or species dete I les - somewhe ratio wer values of I IS criterion	re betweer	e than half of sa n 10-100 is usu re more memo	ally good	pute, and sometimes	s huge will throw a	n error.	•
0:onl; Estima glasso 20 Minim 0.01 0.001 F Thresh 0.05	y keep tion n o er of p um la oy defa	o OTUs nethod penalti mbda ault. Lo or StAF	or species dete I les - somewhe ratio wer values of I IS criterion	cted in more	e than half of sa 10-100 is usu re more memo	ally good	pute, and sometimes	s huge will throw a	n error.	
0:only Estima glasso 20 Minim 0.01 0.001 F Thresh 0.05 Default	y keep tion n o er of p um la oy defa old fo	o OTUs nethod penalti mbda ault. Lo or StAF	or species dete l les - somewhe ratio wer values of l tS criterion	cted in more	e than half of sa n 10-100 is usu re more memo	mples ally good	pute, and sometimes	s huge will throw a	n error.	
0:onl; Estima glasso 20 Minim 0.01 0.01 Fhresh 0.05 Default	y keep tion n o er of p um la oy defi old fo	o OTUs nethod penalti mbda ault. Lo or StAF 5. subsan	or species dete I ies - somewho ratio wer values of I tS criterion	cted in more re betweer ambda requi	e than half of sa	Imples ally good	pute, and sometimes	s huge will throw a	n error.	,
0:onl; Estima glasso 20 Minim 0.01 0.001 H 0.05 Default Numb 50	y keep tion n o er of p um la old fo old fo is 0.0 er of s	o OTUs nethod penalti mbda ault. Lo or StAF 5. subsan	or species dete I les - somewhe ratio wer values of I tS criterion	re betweer	e than half of sa	ally good	pute, and sometimes	s huge will throw a	n error.	
0:only Estima glasso 20 Minim 0.01 0.01 Ethresh 0.05 Default Numb	y keep tion n er of p um la oy defa old fo is 0.0 er of :	o OTUs nethod penalti mbda ault. Lo or StAF 5. subsan	or species dete I ies - somewhe ratio wer values of I tS criterion	cted in more re betweer ambda requi S	e than half of sa	ally good	pute, and sometimes	s huge will throw a	n error.	

Parameters:

Input Parameter	Value	Note for rerun
Microbial data	bac_16S_test.txt	
Fill in the majority for first table	8	
Multiple domains	т	Inter-domain or intra- domain

Plant table	plant_abundance.txt	
Fill in the majority for second table	6	
Estimation method	glasso	Glasso/MB selection
Number of penalties - somewhere between 10-100 is usually good	50	
Threshold for StARS criterion	0.05	Default
Minimum lambda	0.1	Default: 0.01
Number of subsamples for StARS	10	According to no. of samples
Number of computational cores in parallel	2	Not too large
Outputs:		

136: Filtered matrix with majority

135: SpiecEasi report

134: SpiecEasi matrix

SpiecEasi matrix: A matrix for inverse covariance, used to infer associations.

SpiecEasi report: A report for SPIEC-EASI processing.

Filtered matrix with majority: OTU/Gene/Species table after majority selection

3.2 Output file from Spiec-Easi

This step will generate three output files, including bipartite network matrix, visualization input (for Cytoscape or Gephi) and associated edge attributes if needed.

Inputs:

Generate networks from Spiec-Easi Network matrix and output for visualization from Spiec-Easi (Galaxy Version 1.0.0)	▼ Options
SpiecEasi matrix	
Image: Constraint of the second se	• 🖻
Generate bipartite network or single-mode network	
Bipartite network (two groups of species with label '_M' or '_P' in rownames)	•
Visualization approach for this network analysis	
Cytoscape	-
Title for the visualized output file	
visualization for Spiec-Easi	

Parameters:

Input Parameter	Value	Note for rerun
SpiecEasi matrix	SpiecEasi matrix	

Ger	nerate bipartite network or single-mode network	Bipartite network (two groups of species with label '_M' or '_P' in species IDs)	Bipartite	or Adjacent	
Ger	nerate bipartite network or single-mode network	Bipartite network	Bipartite ne single-mod	etwork or de	
Vis	ualization approach for this network analysis	Cytoscape	Cytoscape	e/Gephi	
Title	e for the visualized output file	visualization for Spiec-Easi	Put anythir	ng you want	
	Outputs:				
	662: Adjacent network for _P group Cytoscape Edge at	tribute visualization for Spiec-Eas	i		
	661: Adjacent network for _P group Cytoscape sif visua	lization for Spiec-Easi			
	660: Adjacent network matrix for _P group visualization	n for Spiec-Easi			
	659: Adjacent network for _M group Cytoscape Edge at	tribute visualization for Spiec-Ea	si		
	658: Adjacent network for _M group Cytoscape sif visua	alization for Spiec-Easi			
	657: Adjacent network matrix for _M group visualization for Spiec-Easi				
	656: Bipartite network Cytoscape Edge attribute visuali	zation for Spiec-Easi			
	655: Bipartite network Cytoscape sif visualization for Sp	piec-Easi			
	654: Bipartite network matrix visualization for Spiec-Ea	si			
	653: Whole network Cytoscape Edge attribute visualiza	tion for Spiec-Easi			
	652: Whole network Cytoscape sif visualization for Spie	ec-Easi			
	651: Whole network matrix visualization for Spiec-Easi				

Twelve output files (Cytoscape) for one whole network, one bipartite network and two adjacent networks. For each matrix, there are a 'sif' file to importing into Cytoscape and an edge attribute file.

Eight output files (Gephi) for one whole network, one bipartite network and two adjacent networks. For each matrix, there is a 'csv' file to importing into Gephi as edge file.

4. <u>RMT-based method for Pearson/Spearman correlations</u>

Generate bipartite networks using Pearson/Spearman correlations with RMT-based cutoff. (Coming soon)

4.1 Majority selection

Similar steps to 1.1.

4.2 Similarity matrix calculation

Input:

Similarity matrix calculation To calculate the Pearson/Spearman correlation coefficient among all OTUs (Galaxy Version 1.0.0) ▼ Options

B

Ŧ

Filtered table in tabular format

□ 563: Filtered_OTU_table

Containing headers and rownames

Fill empty cells by

- O Keep blank
- O Fill with smaller value (e.g. 0.01)
- Only filled with smaller value (e.g. 0.01) in blanks with paired valid values

floor values to fill empty cells

0.01

Logarithm

Do not take logarithm

similarity matrix

Spearman's rank correlation

Time series data

No

Parameters:

Input Parameter	Value	Note for rerun
Filtered table in tabular format	Filtered_OTU_table	
Fill empty cells by	only filled with smaller value (e.g. 0.01) in blanks with paired valid values	
floor values to fill empty cells	0.01	Small value
Logarithm	Do not take logarithm	
similarity matrix	Spearman's rank correlation	Spearman/Pearson
Time series data	no	Temporal dataset
Outpute		

Outputs:

691: Correlation matrix spearman (P-value) Filtered_OTU_table

690: Correlation matrix spearman (adjacent) Filtered_OTU_table

The output file contains an adjacent correlation coefficient matrix and the corresponding P values.

4.3 Random Matrix Theory (cutoff)

Input:

Random Matrix Theory (cutoff) To show the cutoff using adjacent m Version 1.0.0)	atrix (Galaxy	☆ Favorite	▼ Optior	ıs
Adjacent correlation matrix				
🗅 🗘 🗅 690: Correlation matrix spearman (adjacent) Filtered_0	OTU_table		•	Þ
e.g. pearson, spearman, LSA, SparCC and etc. Largest cutoff value for RMT scanning				
1.0				
Smallest cutoff value for RMT scanning				
0.01				
Steps value for RMT scanning				
0.01				

The loop for RMT should not excess 100 loops, as it may consume a lot of time.

Parameters:

Input Parameter	Value	Note for rerun
Adjacent correlation matrix	Correlation matrix spearman (adjacent) Filtered_OTU_table	
Largest cutoff value for RMT scanning	1.0	
Smallest cutoff value for RMT scanning	0.01	
Steps value for RMT scanning	0.01	

Output:

693: cutoff plot

692: RMT chi square result of Correlation matrix spearman (a djacent) Filtered_OTU_table

"x_cut"	"dim_OTU"	"poisson_chi.sq"	"poisson_chi.p"
0.83	21	114.866	1.84e-05
0.82	25	131.482	1.92e-07
0.81	25	137.883	2.93e-08
0.8	29	103.023	0.000343
0.79	34	92.826	0.00325
0.78	37	116.385	1.24e-05
0.77	40	125.22	1.13e-06
0.76	40	104.833	0.000224
0.75	41	79.469	0.039
0.74	45	97.223	0.00127
0.73	48	94.667	0.00221
0.72	51	82.88	0.0219
0.71	51	101.217	0.000521
0.7	53	102.506	0.000387
0.69	58	81.182	0.0293
0.68	60	79.152	0.0411
0.67	63	86.648	0.011
0.66	66	85.405	0.0139
0.65	66	87.043	0.0102
0.64	67	72.525	0.111
0.63	71	88.813	0.00728
0.62	74	99.985	0.000689
0.61	75	75.805	0.0693
0.6	76	97.472	0.00121

The output matrix lists the results of cutoff and corresponding goodness-of-fit using χ^2 . It is suggested that the recommended cutoff is the value at which the statistics of χ^2 rejects the hypothesis. Another output file shows the cutoff distributions at significance levels of 0.05 and 0.001, and the candidate cutoffs are above the significance lines.

4.4 <u>Generate networks from RMT-based correlations</u> Input:

Generate netw according to a c	🟠 Favorite	 ✓ Options 				
Correlation matrix	x (adjacent)					
00	690: Correlation matrix spearman (adjacent) Filtered_OTU_table		• 🖻			
pearson/spearman	correlation matrix containing names					
The threshold/cut	off to generate network					
0.64						
P-value matrix (a	djacent)					
00	691: Correlation matrix spearman (P-value) Filtered_OTU_table		• 🖻			
pearson/spearman	correlation significance matrix					
Time series data						
Not time series network (undirection)						
Visualization appr	oach for this network analysis					
Cytoscape			•			
Adjacent or bipar	tite network matrix					
Bipartite network (two groups of species with label '_M' or '_P' in rownames)						
Title for the visua	ized output file - to remind you what the job was for					
RMT result						

Parameters and Outputs:

Network output files would be exported accordingly containing the correlation values and associated

P values.

B. Network analysis (IDEN)

All statistics analysis methods were based on bipartite network matrix. The simple format for this matrix

is illustrated as following:

		Syringa.re ticulata.su bsppekin ensis	Spiraea.p ubescens	Rosa.hug onis	Quercus.w utaishanic a	Prunus.sali cina.	Lonicera.j aponica	Ligustrum. Iucidum	Lespedez a.bicolor	Euonymus .alatus	Elaeagnus .pungens.	Crataegus .pinnatifid a	Celastrus. orbiculatu s	Acer.tatari cum.subs pginnala
OTU.	100594	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU.	_101043	0	0	0	0	0	0	0	1	0	0	0	0	0
OTU.	_10156	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU.	101901	0	0	0	0	0	0	0	0	0	0	1	0	0
OTU.	_102064	0	0	1	1	0	0	0	0	0	0	0	0	0
OTU.	10255	0	0	0	0	0	1	0	0	0	0	0	0	0
OTU.	_102585	0	0	0	0	0	0	0	0	1	0	0	0	0
OTU.	_102738	0	0	0	0	0	0	0	0	1	0	0	0	0
OTU.	102878	0	0	0	0	0	0	0	0	1	0	0	0	0
OTU.	_10356	0	0	0	0	0	0	0	1	0	0	0	0	1
OTU.	_104767	0	0	0	0	0	0	0	0	0	0	0	0	1
OTU.	105670	1	0	0	0	0	0	0	0	0	0	0	0	0
OTU.	_105872	1	0	0	0	0	0	0	0	0	0	0	0	0
OTU.	_106228	0	0	0	0	0	0	0	0	1	0	0	0	0
OTU.	10699	0	0	0	0	0	0	1	0	0	0	0	1	0
OTU.	_109195	0	0	0	0	0	0	0	0	0	1	0	0	0
OTU.	_110218	0	0	1	0	0	0	0	0	0	0	0	0	0
OTU.	111393	0	0	1	0	0	0	0	0	0	1	0	0	0
OTU.	_111654	1	0	0	0	0	0	0	0	0	0	0	0	0
OTU.	113032	0	0	0	0	0	1	0	0	0	0	0	0	1
OTU.	113398	0	1	0	0	0	0	0	0	0	0	0	0	0
OTU	110400	0	0	0	0	0	0	1	0	0	0	0	0	0

1. <u>Bipartite reports</u>

1.1 Network property for bipartite matrix

Inputs:

Network property higher and lower	for bipartite matrix Calculate the network indices for pure network level, level (Galaxy Version 1.0.0)	▼ Options				
Bipartite network	: matrix					
C 4 C	154: Bipartite network matrix (positive and negative)	•				
Weighted or unwo	eighted					
Unweighted		•				
average according t	to their number of interactions or treat nodes equally					
Weighted NODF						
No		-				
time consuming but	t with no use					
Title for the output file - to help you seperate the outputs						
Global network properties of DQS_1 for P6M8 unweighted positive interaction Spiec-Easi						
✓ Execute						

Parameters:

Weighted or Unweighted: unweighted

Weighted NODF: an index to indicate nestedness.

Outputs:

<u>164: Global network properties of DQS</u> <u>1 for P6M8</u> <u>unweighted Spiec-Easi</u>

43 lines

格式: tabular, 数据库: ?

connectance	0.157944365865158	cluster.coefficient.HL	0.157944365865158
web asymmetry	-0.054838700677410	cluster.coefficient.LL	0.157944365865158
web asymmetry	-0.954838709077419	niche.overlap.HL	0.0321513929939518
links per species	1.08064516129032	niche.overlap.LL	0.151603902112066
number of compartments	1	togetherness.HL	0.025354586278956
compartment diversity	NA	togetherness.LL	0.0969357200620724
cluster coefficient	0.158415841584158	C.score.HL	0.939580260349592
nestedness	62.6424915386867	C.score.LL	0.831103971324285
weighted nestedness	-0.0322756788145487	V.ratio.HL	0.0966084275436793
interaction strength asymmetry	0	V.ratio.LL	0.101491000163846
interaction strength asymmetry		discrepancy.HL	270
specialisation asymmetry	0.95/696108834/46	discrepancy.LL	254
linkage density	24.5641791044776	extinction.slope.HL	1.08199383664989
weighted connectance	0.0792392874337987	extinction.slope.LL	51.9419034994615
Fisher alpha	17960784228203932	robustness.HL	0.520010588638403
Shannon diversity	5.81413053182507	robustness.LL	0.980940875530627
interaction evenness	0.759060254676779	functional.complementarity.HL	66.2415335855431
Alatala interaction overpress	0.0000000000000000000000000000000000000	functional.complementarity.LL	19.1328333621475
Alacalo Interaction eveniness	0.9999999999999999	partner.diversity.HL	3.86738602113396
H2	0	partner.diversity.LL	0.0732036626333936
number.of.species.HL	7	generality.HL	47.8571428571428
number.of.species.LL	303	vulnerability.LL	1.10561056105611

1.2 Network property for bipartite matrix at grouplevel

This step calculates the network properties for the two groups of species shown in the bipartite network matrix, e.g. higher lever for column species (plants in this pipeline), and lower level for row species (microbial data in this pipeline).

Inputs:

Network property lower level (Galax	for bipartite matrix at grouplevel Calculate the network indices for higher and vy Version 1.0.0)	▼ Options			
Bipartite network	a matrix				
C 4 C	154: Bipartite network matrix (positive and negative)	•			
Weighted or unw	eighted				
Unweighted		•			
average according t	average according to their number of interactions or treat nodes equally				
Title for the output	ut file - to help you seperate the outputs				
Global network properties at group level of DQS_1 for P6M8 unweighted Spiec-Easi					
✓ Execute					

Parameters:

Weighted or Unweighted: unweighted

Outputs:

<u>169: Global network properties at g</u> roup level of DQS <u>1 for P6M8 unwe</u> ighted Spiec-Easi

30 lines

number.of.species.HL	7
number.of.species.LL	303
mean.number.of.links.HL	47.8571428571429
mean.number.of.links.LL	1.10561056105611
mean.number.of.shared.partners.HL	1.52380952380952
mean.number.of.shared.partners.LL	0.17183572661902
cluster.coefficient.HL	0.157944365865158
cluster.coefficient.LL	0.157944365865158
weighted.cluster.coefficient.HL	0.0105985490600875
weighted.cluster.coefficient.LL	0.550420168067227
niche.overlap.HL	0.0321513929939518
niche.overlap.LL	0.151603902112066
togetherness.HL	0.025354586278956
togetherness.LL	0.0969357200620724
C.score.HL	0.939580260349592
C.score.LL	0.831103971324285
V.ratio.HL	0.0966084275436793
V.ratio.LL	0.101491000163846
discrepancy.HL	270
discrepancy.LL	254
extinction.slope.HL	1.08271159814313
extinction.slope.LL	52.6434834395392
robustness.HL	0.519312746327366
robustness.LL	0.981506931863842
functional.complementarity.HL	66.2415335855431
functional.complementarity.LL	19.1328333621475
partner.diversity.HL	3.86738602113396
partner.diversity.LL	0.0732036626333936
generality.HL	47.8571428571428
vulnerability.LL	1.10561056105611

1.3 Individual node property

Inputs:

Outputs:

333: Network properties at the species level P10M70 dataset 174

1.4 Module separation and module hubs

There are four methods provided in this pipeline for modularization: greedy modularity optimization, short random walks and leading eigenvector of community matrix. Besides, the Z-P result can provide information of module hubs.

Inputs:

Module separation and module hubs Modularization and Z-P result for m hubs with bipartite network (Galaxy Version 1.0.0)	odule			
Bipartite network matrix				
8: Bipartite network matrix of MP	•			
Modularity separation method selection				
• Greedy modularity optimization				
⊖ Short random walks				
O Leading eigenvector of the community matrix				
○ Simulated annealing (slow)				
✓ Execute				

Parameters:

Modularity method: Greedy modularity optimization / Short random walks / Leading eigenvector of the community matrix / Simulated annealing (slow). Select according to previous choice.

Outputs:

17: Z-P plot of fast greedy

16: Modularity results and ZP value of fast_greedy_

2. Bipartite visualization

2.1 Generate node attribute

Inputs:

Generate node at visualization (Ga	ttribute To generate node attribute file for Cytoscape/Gephi	IS
Network propert	ies at the species level file	
C 2 C	15: Network properties at the species level PQG_3 P6M8 0.3 level 0.05 sig	-
Modularity result	t and ZP values	
C 4 C	16: Modularity results and ZP value of fast_greedy	•
Visualization sof	tware approach	_
Cytoscape		-
Name for the out	tput file - to help you seperate different outputs	
Network node att	ribute PQG_3 P6M8 at 0.3 level from SparCC with 0.05 sig 100 perm fast_greedy	
		_
✓ Execute		

Parameters options:

Visualization software approach: Cytoscape / Gephi

Outputs:

A tabular file for Cytoscape or a csv file for Gephi.

3. **<u>Bipartite statistics</u>**

3.1 Degree distribution

Fits functions to cumulative degree distributions of both trophic levels of a network. This program is mainly for cumulative distribution.

Inputs:

Degree distributio levels of a networ	n Fits functions to cumulative degree distributions of both trophic • Options k (Galaxy Version 1.0.0)
Bipartite network	matrix
C 4 C	325: Bipartite network matrix of MP (positive and negative)
Title for the outpu	t file - to help you seperate the outputs
Degree distribution	P10M70 all interactions new dataset 174
✓ Execute	

Outputs:

```
<u>350: Degree distribution P10M70 all interactions</u>
<u>new dataset 174</u>
2.3 KB
格式: html, 数据库: <u>?</u>
```

3.2 Fitting Power law models for bipartite network

Fitting Power law models for bipartite network regular power law, log power law, exponential law and truncated power law. This fitting is mainly to use node connectivity or node degree as response.

Inputs:

Fitting Power law exponential law ar	models for bipartite network regular power law, log power law, nd truncated power law (Galaxy Version 1.0.0)	✓ Options	
Bipartite network	matrix		
Bipartite mode	152: Bipartite network matrix of MP	•	
Title for the output file - to help you seperate the outputs			
Power-law models			
✓ Execute			

Outputs:

456: Power-law models	
1.2 KB	
格式: html , 数据库: <u>?</u>	

3.3 Randomization of bipartite networks

Inputs:

Randomization of bipartite networks Calculate the network properties and modularity based on ramdon networks (Galaxy Version 1.0.0)	▼ Options
Bipartite network matrix	
11: Bipartite network matrix of MP	•
Methods to calculate random network matrix	
 Rewiring links keeping node degree constant shuffle.web mgen 	
No. of random matrix	
100	
Weighted or unweighted	
Weighted	•
average according to their number of interactions or treat nodes equally	
Weighted NODF	
No	•
time consuming but with no use	
Modularity separation method selection	
 Greedy modularity optimization Short random walks Leading eigenvector of the community matrix Simulated annealing (slow) 	
✓ Execute	

Parameter options:

Methods:

- **Rewiring links keeping node degree constant:** rewiring the links between the randomly selected two links.
- Shuffle.web: It implements a method where matrix is first filled honouring row and column totals, but with integers that may be larger than one. Then the method inspects random 2x2 matrices and performs a quasiswap on them. It is similar to ordinary swap, but it also can reduce numbers above one to ones maintaining marginal totals.

• **Mgen:** This is a generic function to build null models for mutualistic networks, used by V ázquez et al. (2009). It is general in the sense that it allows any type of probability matrix to be used for constructing the simulated matrices. It does not, however, constrain rown and column totals, nor does it constrain connectance.

No. of random matrix: 100

Weighted or unweighted: Weighted. Average according to their number of interactions or treat nodes equally

Weighted NODF: No

Modularity separation method selection: Greedy modularity optimization / Short random walks / Leading eigenvector of the community matrix / Simulated annealing (slow). Select according to previous choice.

Outputs:

34: Random network properti es with fast_greedy approach for modularity for 5 method of TRUE weig ht

1	2	3
Mean	SD	
connectance	0.308885383806519	3.34744836935923e-16
web asymmetry	-0.98125	1.78530579699159e-15
links per species	1.8359375	0
number of compartments	1	0
compartment diversity	NA	NA
cluster coefficient	0.315970031545741	0.00969222941389532
nestedness	46.7810420352134	1.88189038244346
weighted nestedness	0.24654175355416	0.0267597806282722
interaction strength asymmetry	0	0
specialisation asymmetry	0.761833731194903	0.0176694835975971
linkage density	109.751812765957	1.59043217428157
weighted connectance	0.171487207446809	0.00248505027231495
Fisher alpha	220488731756681120	289.450890794653
Shannon diversity	7.06902342657826	7.14122318796635e-15
interaction evenness	0.85749486927491	1.11581612311974e-15
Alatalo interaction evenness	1	1.11581612311974e-16
H2	0	0
cluster.coefficient.HL	0.342597543459293	0.00502341031175988
cluster.coefficient.LL	0.382797163120567	0.00334985790872257
modularity(fast_greedy)	0.369800760525125	0.00138309013874574

3.4 OTU/Gene Significance with Environmental Factors (Bipartite network)

The output of this program can be used for significance test using Mantel test for further analysis.

Inputs:

OTU/Gene Significance with Environmental Factors (Bipartite network) Caculate the correlation between OTU/Gene Significance with Environmental Factors (Galaxy Version 1.0.0)	tions
Filtered matrix with microbes and plants	
174: Galaxy172-[Plant_10_microbe_70].tabular	•
Bipartite network matrix	
🗅 🛍 🗀 325: Bipartite network matrix of MP (positive and negative)	•
Environmental factors	
1 1 59: env_Latitude_for_galaxy.txt	•
Correlation method	
• Pearson Correlation Coefficient	
O Spearman Correlation Coefficient	
Standardization method	
O Do not standardize	
⊙ standardize environmental data only (scale each factor to zero mean and unit variance)	
Ostandardize genes and environmental data	
O divide by maximum (both genes and env)	
O divide by maximum and multiply by the number of non-zero items (both genes and env)	
🔿 standardize values into range 01 (both genes and env)	
Missing values	
O fill with 0 (before standardization)	
O fill with 0 (after standardization)	
⊙ignore (only use paired values)	
O fill 0 if paired with a valid value	
✓ Execute	

Parameter options:

Filtered matrix with microbes and plants

Bipartite network matrix

Environmental factors

Correlation method: Pearson Correlation Coefficient / Spearman Correlation Coefficient

Standardization method: standardize environmental data only (scale each factor to zero mean and

unit variance) or other choice

Missing values: ignore (only use paired values)

Outputs:

353: OTU/Gene Significance for bipartite matrix

1,262 lines 格式: **tabular**, 数据库: <u>?</u>

3.5 Mantel Test

For mantel test:

Inputs:

Mantel Test Do mantel test between GS and environmental factors (Galaxy Version 1.0.0)	Options
Gene/OTU significance results	
🗅 🖉 🗀 353: OTU/Gene Significance for bipartite matrix	•
Associated individual nodes' centrality file for or network property at species level for bipartit network	te
C 4 C 333: Network properties at the species level P10M70 dataset 174 all interactions	•
Distance method	
 Euclidean distance Bray-Curtis distance (Not available) Morisita distance (Not available) Jaccard distance (Not available) mantel_type	
Mantel test	•
Annotation file	
It is optional.	•
Upload your annotation file related to OTU/Gene names	
No It is only necessary when you want to calculate mantel test based on certain categories.	•

Parameter options:

Select the corresponding files according to the labels shown in the pipeline.

Mantel type: Mantel test or Partial mantel test

Annotation file: (Optional)

Upload your annotation file related to OTU/Gene names: No / Yes (if you have uploaded)

Outputs:

354: mantel test result all new

2.2 KB 格式: **html**, 数据库: <u>?</u>

For partial mantel test:

Inputs:

Mantel Test Do mantel test between GS and environmental factors (Galaxy Version 1.0.0)	▼ Options
Gene/OTU significance results	
1 1 353: OTU/Gene Significance for bipartite matrix	•
Associated individual nodes' centrality file for or network property at species level for bipartite network	
1 1 333: Network properties at the species level P10M70 dataset 174 all interactions	•
Distance method	
● Euclidean distance	
O Bray-Curtis distance (Not available)	
O Morisita distance (Not available)	
OJaccard distance (Not available)	
mantel_type	
Partial mantel test	•
Included environmental factors	
□ Select/Unselect all	
* #2:AMT	
Please use CTRL to select multiple factors. Do not select #1:ID.	
Partial environmental factors	
Select/Unselect all	
x #3:AMP x #4:pH x #5:Moisture x #6:SOC x #7:NH4N x #8:NO3N x #9:AN x #10:AP	
Please use CTRL to select multiple factors. Do not select #1:ID	
Annotation file	
D 2 D Nothing selected	•
It is optional.	
Upload your annotation file related to OTU/Gene names	
No	-
It is only necessary when you want to calculate mantel test based on certain categories.	
✓ Execute	

Parameter options:

Select the corresponding files according to the labels shown in the pipeline.

Mantel type: Mantel test or Partial mantel test

Annotation file: (Optional)

Upload your annotation file related to OTU/Gene names: No / Yes (if you have uploaded)

Outputs:

<u>355: pmantel test result :</u> 2.3 KB 格式: **html**, 数据库: <u>?</u>

3.6 Module-EigenGene Analysis (Bipartite network)

Inputs:

Module-EigenGene Analysis(Bipartite network) Module-EigenGene calculation with environmental factors (Galaxy Version 1.0.0)	s
Filtered matrix with microbes and plants	
Image: Constraint of the second se	•
Environmental factors related to samples	_
Image: System view of the system of the s	•
Modularity results associated with ZP values	_
Image: Contract of the second state	•
Ignore the member numbers of small modules	
3	
small modules will be ignored	
✓ Execute	

Parameter options:

Select the corresponding files according to the labels shown in the pipeline.

Outputs:

387: Module-EigenGene Analysis Results

1.3 KB 格式: **html**, 数据库: <u>?</u>

C. Network Construction (MENAP)

For the molecular ecological network analyses pipeline (MENAP, Figure 2), due to the adjacent network consisting of a single group, the parameters during network construction should shift to "one group of species" in "majority selection" step. The following steps should take care of this accordingly.

Please see details above.

D. Network Analyses (MENAP)

After network generation, there is one adjacent matrix to show the potential interactions between all species with presence/absence data and the computations of further topological features.

Please refer to above details and import the correct adjacent files within the parameters.

E. Auxiliary tools in miscellaneous section

1. Taxonomy summary of low level species for bipartite networks

This tool is mainly used to assign different OTUs or species into higher taxonomic level, e.g. phylum and genus, and then generate sub-graph matrix for each group at the specific level.

Inputs:

Taxonomy summary of low level species for bipartite networks Taxonomy summary • Options for higher trophic level species at different levels (Galaxy Version 1.0.0)
Binartite netowrk matrix
Image: Substrainty of MP (and negative)
Sample list
□ 4 □ Nothing selected ▼
Sample list for all samples grouping
OTU classification result from rdp classifier
Image: Contract of the sector of the sect
Count species richness or count species abundance
O Species richness
O Species abundance
Summary result type for each sample
O Numbers
○ Percentage
Select which taxonomy level to calculate result
Phylum 🔹
No. of species showing in the plot
0
0 means all species would be shown in the relative abundance plot
✓ Execute

Parameters:

Bipartite network matrix: matrix of bipartite graph

Sample list: Not useful at this stage

OTU classification result from RDP classifier: OTU/Gene/Species classification file

Count species richness or count species abundance: Species abundance / Species richness

Summary result type for each sample: Numbers / Percentage

Select which taxonomy level to calculate result: Phylum (select from classification file)

No. of species showing in the plot: 0

Output:

447: Zipped sub-networks at phylum level 446: Abundance at Phylum at abundance level 445: Taxonomy summary for Phylum at abundance level

One file contains the bipartite network matrix at the specific taxonomic level and another plot is the summary for this level.

After download the zipped file to local directory, you need to unzip this file twice. For the first step of unzipping process, you can easily unzip it. For the second step of unzipping process, you need to rename the extension file type to ".zip" or ".gz" and thereafter you could to unzip this file. After the two steps of unzipping, you can see the separated txt files.

2. Convert sif file to bipartite matrix

This step aims to generate a bipartite matrix from a sif file exported from Cytoscape software. The two groups of species can be separated according to the provided unique label, e.g. "B_OTU" and "P_OTU". The output can be used for bipartite network matrix analysis.

Input:

Output:

	P_OTU001	P_OTU004	P_OTU009	P_OTU023	P_OTU038
B_OTU1065	0	0	0	0	1
B_OTU123	1	0	1	0	0
B_OTU29	1	0	0	1	0
B_OTU39	0	0	0	0	0
B_OTU400	1	0	1	0	0
B_OTU413	1	0	0	0	0
B OTU471	1	1	0	0	0

3. Convert sif file to adjacent matrix

Any exported sif file from Cytoscape software can be imported here and converted to an adjacent network matrix for network analysis

Input:

4. Merge files

This tool is mainly used to merge multiple files into one file.

Input:

Merge Files Merge	e two files (Galaxy Version 1.0)	▼ Options
File1		
C 4 C	97: DXAL	•
File2		
C 4 C	58: XXAL.fastq	•
Additional file for merging		
1: Additional file for merging		
Additional file		
	38: TTS.fastq	•
2: Additional file for merging		
Additional file		
C 4 C	29: XXBN_CBS.fastq	•
+ Insert Additiona	I file for merging Insert more files if you have multiple files to ed file) merge
Succession]
✓ Execute		

Output:

Succession (If you put another name in the "rename the merged file", it will show what you have fill in.)

5. File Compression

Compress file into smaller size.

6. Data location

This tool is mainly used to find the data location for certain dataset in the server. The data location is helpful to find the dataset for Galaxy administrators when you have problems.

Input:

Data Location Data location in the galaxy server (Galaxy Version 1.0.0) 		
Input file		
C 2 C	1690: R2.fastq	•
✓ Execute		

Output:

> file_location.txt

/newdatabase1/galaxy/user_data/datasets/000/105/dataset_105483.dat

F. Operation tricks and common problem solutions

1. Upload

Upload the all the OTU tables or environmental variable datasets to selected history.

🚆 Galaxy /	IDENAP			
工具	1 1 -	Upload button (multiple files a	re available)	
search tools	8)			
Upload				
Plant-Microbes Netv	vork			
Bipartite Network A	<u>nalysis</u>			
Miscellaneous				
已发布的流程				
All workflows				
Download from web o	r upload from disk			
Regular Composite	Collection Rule-based			
		G (
	🖓 Drop files here			
Type (set all):	Auto-detect V Q	Genome (set all): Additional Species A 🔻		
	Choose local file Choose FTP file	Paste/Fetch data Pause Reset Start Close	_	

Required files:

You can find following test data from the "shared library/test data" directory and import these three files there.

2. Basic operations in Galaxy

Please remember to choose "choose permanently" if you want to erase your history permanently, otherwise it will store into a temporary place and your quota will not decrease. See the below introduction for how to find temporarily deleted history.

Copy datasets:

Destination History:
1: For test analysis
Choose multiple histories
— OR —
New history named:
Copy History Items

3. Dataset deletions

Select "saved history" and further choose "Advanced Search" button:

Advanced Search

Choose "all" button to show all history that you have created in your account. And select the deleted history to further erase or retrieve.

Saved Histories

Close Advanced Search			
name:		۹	
tags:		۹	
sharing: accessible all private published shared			
status: <u>active</u> all <u>served</u>			

4. Share historys to other users

Select "share or publish" of a certain history, then fill in the individual users:

